?

專業的汽車應急啓動電源、多功能汽車應急啓動電源、汽車應急電源廠家

汽車應急啓動電源內的锂離子电池保护电路原理分析

來源:恩凡汽車應急啓動電源 點擊: 發布時間:2019-05-06
在如今的汽車中,爲了提高舒適度和行車體驗而設計了座椅加熱、空調、導航、信息娛樂、行車安全等系統,從這些系統很容易理解在車中爲各種功能供電的電子系統的好處。現在我們很難想像僅僅100多年以前的景象,那時,在汽油動力汽車中,一個電子組件都沒有。在世紀交替時期的汽車開始有了手搖曲柄,前燈開始用乙炔氣照明,也可以用鈴聲向行人發出提示信息了。如今的汽車正處于徹底變成電子系統的交界點,最大限度減少了機械系統的采用,正在成爲人們生活中最大、最昂貴的“數字化工具”。
 
隨著越來越多的機械系統被電子系統取代,電量功耗變得越來越重要了。不管車主們使不使用汽車,都有可能因爲汽車電瓶電量不足導致無法啓動的問題。因此商家們又根據汽車電量而研發出一款電子阿凡达成人版先锋——汽車應急啓動電源。汽車應急啓動電源的介紹這裏就不在贅述。具體可參考:/faq/64.html
 
我們今天來說說汽車應急啓動電源的安全問題。大家都知道汽車應急啓動電源的核心就是其內置的锂離子電池,而锂離子電池本身的特性決定了它不能被過充、過放、過流、短路以及超高溫充放電,因此锂離子電池锂電組件總會跟著一塊精致的保護板和一片電流保險器出現。
 
锂離子電池的保護功能通常由保護電路板和PTC等電流器件協同完成,保護板是由電子電路組成,在-40至85的環境下時刻准確的監視電芯的電壓和充放回路的電流,及時控制電流回路的通斷;PTC在高溫環境下防止電池發生惡劣的損壞。普通锂離子電池保護板通常包括控制IC、MOS開關、電阻、電容及輔助器件FUSE、PTC、NTC、ID、存儲器等。其中控制IC,在一切正常的情況下控制MOS開關導通,使電芯與外電路導通,而當電芯電壓或回路電流超過規定值時,它立刻控制MOS開關關斷,保護電芯的安全。
 
锂離子電池保護板原理:
 
汽車應急啓動電源内锂离子电池保护原理
 
如圖中所示,該保護回路由兩個MOSFET(V1、V2)和一個控制IC(N1)外加一些阻容元件構成。控制IC負責監測電池電壓與回路電流,並控制兩個MOSFET的柵極,MOSFET在電路中起開關作用,分別控制著充電回路與放電回路的導通與關斷,C3爲延時電容,該電路具有過充電保護、過放電保護、過電流保護與短路保護功能。
 
一、正常狀態
 
在正常状态下电路中N1 的“CO”与“DO”脚都输出高电压,两个MOSFET 都处于导通状态,电池可以自由地进行充电和放电,由于MOSFET 的导通阻抗很小,通常小于30 毫欧,因此其导通电阻对电路的性能影响很小。此状态下保护电路的消耗电流为μA 级,通常小于7 μA。
 
二、過充電保護
 
锂离子电池要求的充电方式为恒流/ 恒压,在充电初期,为恒流充电,随着充电过程,电压会上升到4.2V(根据正极材料不同,有的电池要求恒压值为4.1V),转为恒压充电,直至电流越来越小。电池在被充电过程中,如果充电器电路失去控制,会使电池电压超过4.2V后继续恒流充电,此时电池电压仍会继续上升,当电池电压被充电至超过4.3V 时,电池的化学副反应将加剧,会导致电池损坏或出现安全问题。在带有保护电路的电池中,当控制IC检测到电池电压达到4.28V(该值由控制IC决定,不同的IC有不同的值)时,其“CO”脚将由高电压转变为零电压,使V2由导通转为关断,从而切断了充电回路,使充电器无法再对电池进行充电,起到过充电保护作用。而此时由于V2自带的体二极管VD2的存在,电池可以通过该二极管对外部负载进行放电。在控制IC检测到电池电压超过4.28V至发出关断V2信号之间,还有一段延时时间,该延时时间的长短由C3决定,通常设为1秒左右,以避免因干扰而造成误判断。
 
三、過放電保護
 
電池在對外部負載放電過程中,其電壓會隨著放電過程逐漸降低,當電池電壓降至2.5V時,其容量已被完全放光,此時如果讓電池繼續對負載放電,將造成電池的永久性損壞。在電池放電過程中,當控制IC檢測到電池電壓低于2.3V(該值由控制IC決定,不同的IC有不同的值)時,其“DO”腳將由高電壓轉變爲零電壓,使V1由導通轉爲關斷,從而切斷了放電回路,使電池無法再對負載進行放電,起到過放電保護作用。而此時由于V1自帶的體二極管VD1的存在,充電器可以通過該二極管對電池進行充電。由于在過放電保護狀態下電池電壓不能再降低,因此要求保護電路的消耗電流極小,此時控制IC會進入低功耗狀態,整個保護電路耗電會小于0.1μA。在控制IC檢測到電池電壓低于2.3V至發出關斷V1信號之間,也有一段延時時間,該延時時間的長短由C3決定,通常設爲100毫秒左右,以避免因幹擾而造成誤判斷。
 
四、過電流保護
 
由于锂离子电池的化学特性,电池阿凡达成人版先锋厂家规定了其放电电流最大不能超过2C(C=电池容量/小时),当电池超过2C电流放电时,将会导致电池的永久性损坏或出现安全问题。电池在对负载正常放电过程中,放电电流在经过串联的2个MOSFET时,由于MOSFET的导通阻抗,会在其两端产生一个电压,该电压值U=I*RDS *2, RDS为单个MOSFET导通阻抗,控制IC上的“V-”脚对该电压值进行检测,若负载因某种原因导致异常,使回路电流增大,当回路电流大到使U>0.1V(该值由控制IC决定,不同的IC有不同的值)时,其“DO”脚将由高电压转变为零电压,使V1 由导通转为关断,从而切断了放电回路,使回路中电流为零,起到过电流保护作用。在控制IC检测到过电流发生至发出关断V1信号之间,也有一段延时时间,该延时时间的长短由C3决定,通常为13毫秒左右,以避免因干扰而造成误判断。在上述控制过程中可知,其过电流检测值大小不仅取决于控制IC的控制值,还取决于MOSFET的导通阻抗,当MOSFET导通阻抗越大时,对同样的控制IC,其过电流保护值越小。
 
五、短路保護
 
電池在對負載放電過程中,若回路電流大到使U>0.9V(該值由控制IC決定,不同的IC有不同的值)時,控制IC則判斷爲負載短路,其“DO”腳將迅速由高電壓轉變爲零電壓,使V1由導通轉爲關斷,從而切斷放電回路,起到短路保護作用。短路保護的延時時間極短,通常小于7微秒。其工作原理與過電流保護類似,只是判斷方法不同,保護延時時間也不一樣。
 
以上詳細闡述了單節锂離子電池保護電路的工作原理,多節串聯锂離子電池的保護原理與之類似,在此不再贅述。除了控制IC外,電路中還有一個重要元件,就是MOSFET,它在電路中起著開關的作用,由于它直接串接在電池與外部負載之間,因此它的導通阻抗對電池的性能有影響,當選用的MOSFET較好時,其導通阻抗很小,電池包的內阻就小,帶載能力也強,在放電時其消耗的電能也少。

上一篇:沒有了
下一篇:這誰頂得住!汽車啓動不了就要更換蓄電池?

cache
Processed in 0.002263 Second.